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Towards high-throughput many-body perturbation theory:
efficient algorithms and automated workflows
Miki Bonacci 1,2✉, Junfeng Qiao 3, Nicola Spallanzani2, Antimo Marrazzo 4, Giovanni Pizzi 3,5, Elisa Molinari 1,2,
Daniele Varsano 2, Andrea Ferretti 2 and Deborah Prezzi 2

The automation of ab initio simulations is essential in view of performing high-throughput (HT) computational screenings oriented
to the discovery of novel materials with desired physical properties. In this work, we propose algorithms and implementations that
are relevant to extend this approach beyond density functional theory (DFT), in order to automate many-body perturbation theory
(MBPT) calculations. Notably, an algorithm pursuing the goal of an efficient and robust convergence procedure for GW and BSE
simulations is provided, together with its implementation in a fully automated framework. This is accompanied by an automatic GW
band interpolation scheme based on maximally localized Wannier functions, aiming at a reduction of the computational burden of
quasiparticle band structures while preserving high accuracy. The proposed developments are validated on a set of representative
semiconductor and metallic systems.
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INTRODUCTION
Computational HT screening is nowadays a consolidated
approach to materials discovery1–3, as a complementary and
accelerated tool with respect to experimental efforts. In the last
decade, seminal works in this field have addressed, among
many other topics, the discovery of novel 2D materials4–10, the
identification of optimal new lithium-ion battery anodes11,12,
thermoelectric13,14, photocatalysts15, and photovoltaic light
harvesting16–18 materials. The success of these studies relies
on the development of different software and implementa-
tions19 that were able to encode complex domain-specific
knowledge into automated and robust workflows – enforcing
rigorous computational protocols19,20 and managing all the
steps concerning a simulation – which thus require the least
possible human intervention21–29.
Concerning the electronic structure field, most of these works

and implementations are based on DFT, which allows one to
compute total energies, optimized geometries, and other ground
state properties of materials with predictive accuracy. However,
different approaches are required for the accurate prediction of
excited-state properties of materials, such as quasiparticle (QP)
band structures and absorption spectra, which are typically crucial
for the description of active processes in modern optoelectronic
technologies, like photovoltaics, photocatalysis, light-emitting
diodes (LEDs), photodetectors, and solar cells30–36. In this context,
MBPT and Green’s function methods represent the state-of-the-art
tools, where charged (electronic quasi-particle levels) and neutral
excitations (optical properties, electron energy loss spectra) can be
obtained by means of the GW approximation and the Bethe-
Salpeter equation (BSE), respectively37.
To date, a limited number of attempts have been made

toward automation38 and HT screening9,39 based on these
MBPT approaches, mainly because of their conceptual and
computational complexity. Indeed, depending on the specific

physical problem, different levels of theory might be adopted40,
further branching off depending on the chosen approximations
and implementations41,42. Furthermore, even for the simplest
approximations, these calculations require the control over a
much larger parameter space with respect to DFT, with
parameters that are often interdependent and might change
depending on the specific implementations adopted, but the
choice of which is always crucial to obtain reliable results. From
a computational point of view, this type of simulations are
constituted by a chain of distinct steps, often relying on the
usage of different software tools, each of them with their own
specificity, e.g., in terms of memory and parallelization
requirements. Memory requirements are much heavier than in
standard DFT simulations even for moderate system size, and
often require massive usage of parallel computing resources.
Calculations often fail due to memory overflow and have to be
restarted with careful choice of parameters. All of these
problems make the application of MBPT-based approaches a
complex and difficult task per se, and its automation still an
open challenge.
Building on pioneering works in the field38,39, we here focus on

the development of an improved algorithm aiming at an efficient
and computationally cost-effective management of the choice of
converged parameters for accurate GW-BSE calculations. The
algorithm is implemented in the AiiDA framework28,29, a platform
that is routinely used for HT studies6,43–45 and that incorporates
the ADES model for Automation, Data, Environment, and
Sharing24. As detailed below, this implementation allows us to
encode an efficient error handling, memory and parallelization
management, and logic computational flows within automated
python workflows. Moreover, it guarantees a seamless interoper-
ability of different software codes that tackle the different steps
usually involved in MBPT simulations, i.e., the preliminary DFT part
(here using QUANTUM ESPRESSO46,47), the GW-BSE calculations
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(YAMBO48,49), and any required post-processing. In particular, for the
latter, we here introduce a scheme based on maximally localized
Wannier functions50 for the automatic interpolation of GW band
structures, which interfaces the WANNIER9051 and YAMBO projects. All
of these developments point to a drastic reduction of both human
and computational efforts, key issues for enabling HT studies. In
addition, by incorporating the different domain-specific scientific
and computational competences into robust and reliable work-
flows, we aim at making accurate GW-BSE calculations available
for the materials science community at large, including non-
experts in the field (e.g., via graphical user interfaces52), similarly to
what has already happened with DFT.
The manuscript is organized as follows. In the Results and

Discussion Section, we first introduce a model for the convergence
surface in the N-dimensional space of the GW (BSE) variables, and
present our improved algorithm for efficiently retrieving converged
values for the main (interdependent) parameters. The implementa-
tion of this algorithm within the aiida-yambo plugin is then
described, followed by the presentation of the aiida-yambo-
wannier90 plugin that encodes the GW band interpolation based
on Wannierisation. Both these implementations are validated for
selected prototypical systems. Additional details on simulations are
provided in the Methods section. In the remainder of this section, we
instead introduce the main concepts and quantities related to the
GW and BSE schemes, which will be useful to properly understand
the subsequent Sections.
Accurate electronic band structures of materials can be

computed within the MBPT framework by correcting the
Kohn–Sham (KS) DFT eigenvalues with a self-energy term Σ by
means of the GW approximation, i.e. Σ is approximated with
the first term of the perturbation series expansion in terms of
the screened Coulomb interaction W53. We hereafter consider the
simplest and most widespread implementation of GW, i.e. the
so-called G0W0 approach, where G0 is the KS independent-particle
one-body Green’s function andW is computed within the random-
phase approximation (RPA)54. Nevertheless, the convergence
algorithm presented here can be used also for more sophisticated
flavors of the theory, e.g. the self-consistent GW37. Under these
assumptions and by considering a plane-wave expansion, the self-
energy term Σnk for a band n at a given k-point – written as the
sum of the Fock exchange (Σx) and the frequency-dependent
correlation (Σc) terms – is given by:

Σxnk ¼ �
Xocc
m

Z
dq

ð2πÞ3
XGx

cut

G

vGðqÞ ρnmðk;q;GÞj j2fm;k�q (1)

and

ΣcnkðωÞ ¼ i
XNb

m

Z
dq

ð2πÞ3
XGcut

GG0
ρnmðk;q;GÞρ�nmðk;q;G0Þ

´
Z

dω0

2π
WGG0 ðq;ω0Þ

´
fm;k�q

ω� ω0 � ϵm;k�q � iη
þ 1� fm;k�q

ω� ω0 � ϵm;k�q þ iη

� �
;

(2)

where vG(q) and WGG0 ðq;ω0Þ are the bare and screened Coulomb
interaction, respectively. The generalized dipole matrix elements
ρnm(k, q,G) are defined as:

ρnmðk;q;GÞ ¼ nkh jeiðqþGÞ�r mk � qj i; (3)

where ϵKSnk and nkj i are the corresponding KS eigenvalues and
eigenvectors. Here, W can be written in terms of the reducible
polarizability χ (W= v+ vχv), which is in turn computed by solving
a Dyson equation for the RPA irreducible polarizability χ0:

χGG0 ðq;ωÞ ¼
XGcut

G00
I � vðqÞχ0ðq;ωÞ� ��1

GG00χ
0
G00G0 ðq;ωÞ; (4)

where

χ0GG0 ðq;ωÞ ¼ 2
XNb

nm

Z
dk

ð2πÞ3 ρ
�
mnðk;q;GÞρmnðk;q;G0Þ

´
f nk�qð1� fmkÞ

ωþ ϵnk�q � ϵmk þ iη
� f nk�qð1� fmkÞ
ωþ ϵmk � ϵnk�q � iη

� �
:

(5)

In practice, the above quantities are computed by introducing
specific approximations that crucially impact both the accuracy and
the computational and memory costs of the calculations. In
particular, Eq. (4) as well as Eq. (2) involve a discrete, finite number
of G vectors, set by a cutoff parameter Gcut, which defines the size of
the response matrix. Moreover, with the parameter Nb, we introduce
a truncation over the KS states summation for both response χ0GG0
(Eq. (5)) and self-energy Σc (Eq. (2)), which should in principle include
all occupied and an infinite number of empty states. Finally, all the
integrals in reciprocal space are computed on a discrete k-points (q-
points) grid whose size, Nk, defines the accuracy of the sampling of
the Brillouin zone (BZ). All of these three parameters, Gcut, Nb, and
Nk, need to be increased till the desired convergence is reached.
One of the major obstacles to automate the convergence

procedure lies in the interdependence of the first two parameters,
Gcut and Nb, such that their convergence has to be performed jointly,
as thoroughly discussed elsewhere38,42,55. Indeed, Eqs. (4) and (5)
contains a summation over both empty states and reciprocal lattice
vectors (G), and the expression of the generalized dipole terms in Eq.
(3) is such that matrix elements with large G are governed by high-
energy KS states38. Furthermore, the interdependence is non-trivial,
given the presence of an inversion in Eq. (4) that further enters in the
evaluation of the correlation self-energy, Eq. (2). Given the lack of an
efficient “recipe” to carry out this non-trivial, coupled convergence,
one has to resort to an iterative convergence of each of the two
parameters by fixing the other, in an alternating way. This procedure,
in addition of being tedious, is computationally very expensive,
sometimes representing the most cumbersome part of a GW
calculation.
Starting from the GW quasi-particles, the solution of the BSE54,56

can give access to optical properties of materials via the
macroscopic dielectric function:

ϵMðq;ωÞ ¼ 1� 2
VNq

vðqÞ
X
λ

ΦλðqÞ

´
1

EλðqÞ � ðωþ iηÞ þ
1

EλðqÞ þ ðωþ iηÞ

� �
;

(6)

where V is the volume of the unit cell; Nq is the number of q-points
sampling the Brillouin zone (BZ); Eλ(q) is the eigenvalue of the
exciton λ at momentum q ¼ k � k0, and the corresponding
exciton oscillator strength Φλ(q) is defined as:

ΦλðqÞ ¼
X
vc;k

vk � qh je�iq�r ckj iAλ
vckðqÞ

�����
�����
2

: (7)

Equation (7) contains a summation over valence and conduc-
tion bands (v, c), and k-point mesh, which are the main
parameters to converge for a BSE calculation. The terms Aλ

vckðqÞ
represent the weight of each electron-hole transition contributing
the exciton λ, as resulting from the solution of the BSE. The
summation over bands mainly defines the range of energies
under investigation. The k-point mesh is connected to the
accuracy with which we describe the exciton composition in
terms of single-particle v→ c transitions over the entire BZ, and it
is usually significantly larger than the one needed to converge the
corresponding GW band structure. Additional convergence
parameters are the number of G vectors used for expanding the
KS wave-functions in the transition matrix elements, as defined in
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Eq. (3), and for Fast-Fourier-Transform (FFT) operations, as well as
the plane-wave expansion and empty bands summation in the
BSE kernel (both direct and exchange terms). These last three
parameters are usually inherited from GW convergences. The
convergence procedure proposed in this work, described in detail
in the next Section, consists in the same algorithm for both GW
and BSE, i.e. is agnostic on the observable (gaps, excitonic
eigenvalues) that we are considering. For this reason and to avoid
repetitions, we will focus herein on GW convergences only for the
validation of the workflow discussed below. An example of BSE
convergence is provided in the Supporting Information (Supple-
mentary Fig. 12).

RESULTS AND DISCUSSION
Description of the convergence surface
The above-described coupled convergence of the parameters,
combined with a much worse scaling than DFT and more
computationally and memory demanding calculations, call for
efficient procedures to describe and explore the convergence
space in GW-BSE simulations. A possible strategy is to describe the
convergence space in terms of an analytic function of the
parameters38,39,41,57–59. For a general (N+ 1) dimensional space, a
model convergence surface f(x) that represents the value of a
given observable E(x) (e.g., quasiparticle energies or excitonic
eigenvalues) as a function of the N parameters x= [x1, . . . , xN] can
be defined as:

f ðxÞ ¼
YN
i

Ai

xαii
þ bi

� �
; (8)

where Ai, bi, and αi are free fitting parameters, and B ¼QN
i bi is the

extrapolated converged value. Of course, the accuracy of the latter
depends on the actual region of the parameter space explored for
the evaluation of the convergence behavior, i.e., how far is the
extrapolated value from the exact one. As such, B might not
always be a good choice for guiding the search of the
convergence parameters.
In the following, we introduce conditions on the mixed partial

derivatives of Eq. (8) as a way to address explicitly the parameter
interdependence. Indeed, these terms coincide with the off-
diagonal elements of the related Hessian matrix, and correspond
to the interaction terms between the parameters.
The adoption of an analytical form for the description of the
convergence space has the clear advantage of enabling the
calculation of all-order derivatives, once the fitting parameters are
known. On the other hand, not taking directly into account this
interdependence can result in a very tedious convergence
procedure, as it would require the cyclic repetition of multiple
univariate convergences, as mentioned in the Introduction
(further details are provided in Ref. 49).
For the expression in Eq. (8), the gradient components are:

f 0xi ðxÞ ¼ �αi
Ai

xαiþ1
i

YN
j≠i

Aj

xαjj
þ bj

 !
; (9)

while second derivatives are:

f 00xi ðxÞ ¼ αiðαi þ 1Þ Ai

xαiþ2
i

YN
j≠i

Aj

xαjj
þ bj

 !
; (10)

f 00xi ;xj ðxÞ ¼ αiαj
AiAj

xαiþ1
i xαjþ1

j

YN
k≠i;j

Ak

xαkk
þ bk

� �
: (11)

The asymptotic region of the convergence surface can be
determined by imposing, for each parameter xi, xj with i, j= 1,..., N,

two conditions:

jf 0xi ðxÞj<Δi

jf 00xi ;xj ðxÞj<Δij

(
(12)

The first condition determines the region in which the conver-
gence surface becomes flat (thus approaching convergence),
whereas the condition on second partial derivatives ensures that
the N parameters are no longer interdependent. The threshold
values Δi and Δij can be tuned according to the desired accuracy.
According to our experience, the asymptotic region can be safely
identified by choosing Δi= 5 ⋅ 10−5 and Δij= 1 ⋅ 10−8. Once this
asymptotic region has been determined, a guess for the
converged value of f(x), Eguess, is made, and its accuracy is then
checked and validated according to the automated algorithm
described below.

Convergence algorithm
Figure 1 schematically depicts our convergence algorithm, which
is purposed to obtain the desired accuracy on GW-BSE results with
the least possible number of calculations. In the following, we
consider Nb and Gcut as the two interdependent parameters to be

Fig. 1 Flowchart of the convergence algorithm. After generating
the grid for the N-dimensional parameter space, a subset of M
simulations is performed. The results are then fitted to predict
the converged parameters. Finally, the accuracy (Eq. (13)) and the
convergence (Eq. (14)) of the prediction are verified, and the
procedure iterated, if needed.
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converged simultaneously. We remark that, while the algorithm is
specifically designed to handle coupled convergences, it can be
successfully used to accelerate convergence tests with respect to
any other parameter, such as the BZ k-point mesh or the FFT grids.
The first step (i) consists in the construction of the

N-dimensional space of parameters as a grid of equally spaced
points, with spacing and ranges provided from input. It is worth
noting that, to fit the functional form of Eq. (8), one needs to
generate a grid with minimum 3N points, since f(x) contains three
free fitting parameters for each of the N dimensions of the
parameter space. However, a further reduction on the minimal
grid size (that is, on the minimum number of calculations to
perform) can be obtained by fixing the power-law dependence, αi,
to a given value, as suggested in Ref. 38, thus resulting in a
minimal grid size of 2N. Usually, much denser grids are generated,
where (ii) M0 ≥ 2N calculations are performed on a subset of the
grid points, chosen such as to efficiently sample the
parameter space.
Next, (iii) the results of the calculations are fitted by using the

expression Eq. (8). As mentioned above, the power laws are fixed
to given values: αi ∈ {1, 2} ∀ i= 1, ...N, and the one resulting in the
lowest mean squared error is chosen. The asymptotic region is
then identified by computing the first and second order
derivatives (Eqs. (9)–(11)), and imposing the conditions in Eq.
(12). Given the asymptotic region, a guess converged value is
selected Eguess= f ðN0

b;G
0
cutÞ, where (N0

b;G
0
cut) are the lowest values

that can be chosen for the parameters such that Eguess is within a
desired convergence threshold Δ with respect to the asymptotic
region.
To establish the accuracy and convergence of the fitting

procedure, (iv) EðN0
b;G

0
cutÞ is computed and compared to the

outcome of the fit Eguess, by considering the chosen threshold Δ
(see Eq. (13) below). If the accuracy condition is satisfied, we need
to check the convergence of the fitting procedure, that is, a new
pair of parameters ðN1

b;G
1
cutÞ is obtained from the fit by adding the

ðN0
b;G

0
cutÞ point to the initial M0 grid, and compared to the

previous one (see Eq. (14) below). The last step is repeated until
convergence is reached. If the accuracy condition is not satisfied,
the grid is instead shifted toward higher values of the parameters,
and the steps (ii)–(iv) are repeated until the two conditions:

jEðNj
b;G

j
cutÞ � EfitðNj

b;G
j
cutÞj<Δ; (13)

ðNjþ1
b ;Gjþ1

cut Þ ¼ ðNj
b;G

j
cutÞ (14)

are simultaneously satisfied for the j-th iteration.

The aiida-yambo plugin and automated workflows
The above convergence algorithm has been implemented in the
new version of the aiida-yambo plugin (see Code Availability
Section), which is meant to fully automate GW-BSE calculations by
interfacing the YAMBO project48,49 and the AiiDA informatics
infrastructure and workflow management system28,29. The auto-
mation concerns input generation, scheduler submission, and
output parsing phases. The output parsing of the aiida-yambo
plugin is partially done by using YAMBOPY functions49. Thanks to the
AiiDA infrastructure, links between single calculations are mana-
ged on the fly by ad-hoc, dynamic workflows (the so-called
workchains in the AiiDA jargon), i.e. their execution path is not
fixed, but can depend on the results of completed calculations.
This allows for the implementation of complex logics, such as
those characterizing the convergence algorithm and GW band
interpolation that we propose in this work. Moreover, each
calculation, together with inputs and outputs, is stored in the
AiiDA relational database, thus ensuring data provenance and full
reproducibility of results.
Currently, the aiida-yambo plugin supports quasiparticle

(G0W0 and COHSEX53 level) and optical properties (IP-RPA and

BSE) simulations, as well as interfaces with different codes (e.g.,
QUANTUM ESPRESSO and WANNIER90). These options are implemented in
the YamboCalculation and YppCalculation classes, which
manage individual simulations (including data interfacing) that
can be performed by using the YAMBO code. On top of them, task-
specific workflows are implemented, and organized in a modular
way, in order to automate tasks of increasing complexity. In
particular, the aiida-yambo plugin contains three main work-
flows, each of them targeting a precise task:

● YamboRestart: automation of error handling and restart for
each YamboCalculation;

● YamboWorkflow: automation of the single GW or BSE flow
(composed of several interlinked steps, explained in the
following);

● YamboConvergence: automation of the convergence (com-
posed of multiple YamboWorkflow runs).

Their nested organization is shown in Fig. 2. The highest level
workflow is represented by the YamboConvergence work-
chain, which implements the full automation of the conver-
gence algorithm described above, thus allowing for all YAMBO

simulations to be organized on the fly, without any external
user intervention. The user is only requested to provide a
python list containing the information on the parameter space
to be explored. An example of such input reads:

Fig. 2 Hierarchical structure of the aiida-yambo workchains.
The highest level workflow is YamboConvergence, which calls
multiple YamboWorkflow workchains. YamboWorkflow comprises
all the steps needed to perform individual GW-BSE calculations from
scratch. In case of failures, it calls the YamboRestart workchain for
automatic error handling. The outputs are stored in the AiiDA
database in a human readable fashion, and are easily accessible and
shareable by the user.
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[
{
‘var’: [
‘BndsRnXp’,
‘GbndRnge’,
‘NGsBlkXp’
],
‘start’: [50, 50, 2],
‘stop’: [400, 400, 10],
‘delta’: [50, 50, 2],
‘max’: [1000, 1000, 36],
‘what’: [‘gap_GG’],
‘conv_thr’: 0.1,
‘conv_thr_units’: ‘eV’,
},
]

where the YAMBO variables “BndsRnXp” and “GbndRnge” govern the
convergence over empty states, Nb, to be carried out jointly with that
on the size of the response matrix, Gcut (“NGsBlkXp” variable). The
edges of the grid (“start” and “stop”) and its spacing (“delta”),
together with an upper bound of the parameter space (“max”),
limiting the search to computationally accessible calculations, are
also set by the user. The key “what” indicates the quantity to be
converged – in our example, the direct band gap of the material at Γ
point – up to a given convergence threshold Δ (“conv_thr” key).
Notably, it is possible to select a convergence threshold Δ for each
set of GW (BSE) parameters that have to be converged simulta-
neously, thereby avoiding any risk of over-convergence.
The output summarizes the convergence history and allows the

user to easily parse the converged simulation. YamboConver-
gence allows one to converge several many-body quantities, like
quasiparticle levels, band-gaps, as well as optical excitation
energies. Notably, the convergence block in Fig. 2 can be skipped
if converged parameters are already known.
Each single GW (BSE) calculation is instead automated within

YamboWorkflow, which is the core workchain of the plugin that
takes care of performing all the steps needed in a typical YAMBO

simulation – from preliminary self-consistent (SCF) and non-self-
consistent (NSCF) DFT calculations to the actual GW (BSE) calcula-
tions, and the related post-processing. The workflow ensures a robust
interoperability between DFT and MBPT codes (QUANTUM ESPRESSO and
YAMBO, respectively), and links subsequent calculations, interfacing the
data automatically. In practice, YamboWorkflow encodes the specific
flowchart underlying each requested calculation, and allows for its
dynamic execution according to the instructions provided in input.
This implies performing all the intermediate steps needed for a
specific calculations without the need of instructing them explicitly,
or, on the contrary, to skip some of the intermediate steps for which
parent calculations are available, fully exploiting the YamboWorkflow
provenance information.
To support a restart mechanism in case of code failures,

YamboWorkflow takes advantage of the YamboRestart work-
chain, a sub-level workflow that encodes an automatic error
handler (inherited from the AiiDA BaseRestartWorkchain
class) which, depending on the encountered failure, automatically
instructs a restart run. For out-of-memory errors or failures
connected with insufficient wall-time requests, YamboRestart
automatically resubmits the calculation by appropriately changing
the requested resources (e.g., the maximum wall-time and the
MPI/OpenMP balance); parallelization errors are managed by
overwriting the parallelism variables set in input by the user with
the default parallelism decided on the fly by yambo. In all these
cases, an efficient, CPU-time-saving restart mechanism is imple-
mented, which avoids to restart unfinished runs from scratch by
automatically retrieving and enabling the reuse of stored
data files.
As a final issue, we would like to discuss the possibility to

develop protocols for MBPT calculations. Indeed, most of the DFT-

based AiiDA plugins enable the use of protocols60, that is, the
possibility of creating inputs with pre-populated default values for
several parameters. Such protocols are usually code-agnostic and
robust, given the high level of reproducibility of DFT with different
quantum engines19. Moreover, their reliability is guaranteed by
means of large scale studies spanning systems with a wide variety
of characteristics (e.g., metals, semiconductors, systems with
different dimensionality)44.
Concerning MBPT calculations, the possibility to define proto-

cols is still an open issue38. First of all, code-agnostic parameters
are not at all easy to be determined as it is for DFT-based codes,
because the MBPT implementations and the subsequent defini-
tion of parameters can differ in very many aspects, as highlighted
in the Introduction section. Secondly, the high computational cost
of these simulations has limited so far the number of systems to
be studied extensively, which is crucial to define a reliable
statistics on convergence parameters. Last but not least, DFT-
based protocols usually result in safe but overconverged

Fig. 3 Flowchart of the YamboWannier90WorkChain for the
Wannier interpolation of GW band structures. After performing
the GW convergence, the workflow searches for a commensurate
k-point meshes for yambo and wannier90.x, and carries out the
corresponding GW QPs calculations. Given the QP corrections, the
workflow proceeds with the Wannierisation and the band inter-
polation at DFT and GW level.
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parameters, an approach that might lead to unfeasible calcula-
tions when moving to the GW-BSE framework.
For all these reasons, we believe that an efficient, fully

automated convergence tool, as the one presented here, is
currently the most valuable solution. Nonetheless, also in view of
possible future developments, the aiida-yambo plugin pro-
vides an implementation for a protocol framework for both GW
and BSE simulations, which is currently pre-populated on the basis
of previous experience on a limited subset of systems. Such
protocols concern several parameters connected to the main
yambo input variables, such as the FFT grids (“FFTGvecs”), the
summation over empty states (“BndsRnXp” and “GbndRnge”), the
plane-wave expansion for the polarizability (“NGsBlkXp”) and the
BZ k-point sampling. A detailed documentation on these and
other aspects concerning the aiida-yambo plugin is provided at
https://aiida-yambo.readthedocs.io/en/master/.

Automatic GW bands interpolation: the aiida-yambo-
wannier90 plugin
GW band interpolation from Wannierisation is a crucial task in
order to obtain the most accurate quasiparticle band structure
with the lowest computational cost. This task is encoded in the
aiida-yambo-wannier90 plugin (see Code Availability Sec-
tion). Essentially, the plugin provides a meta-workflow, called
YamboWannier90WorkChain, which utilizes the automation
and error handling of the underlying aiida-yambo and aiida-
wannier90-workflows plugins for GW convergence and
Wannierisation, respectively. The flowchart of the workflow is
summarized in Fig. 3. Starting from a given crystal structure, the
workflow first launches a YamboConvergence workflow for
automatic convergence. Then, it finds the minimal commensurate
mesh with the wannier90.x ones that satisfies the GW
convergence conditions (see below). Thirdly, it runs YamboWork-
flow to compute all the quasiparticle corrections required for the
Wannierisation on the commensurate mesh, and a subsequent
ypp calculation (by means of YppRestart) to extract the GW
corrections in a Wannier90eig file format. Fourthly, the
workflow Wannierizes the KS wavefunctions, saving the unitary
transformation matrices of maximal localization, and interpolates
the band structure. Finally, the workflow performs the Wannier-
isation procedure at G0W0 level, which consists in incorporating
the GW corrections into the DFT eigenvalues, and interpolating
the band structure by using the DFT Wannierisation outcomes.
A crucial step of the workflow is finding a commensurate mesh

for both GW QP calculations and Wannierisation. Indeed, the GW
mesh resulting from automated convergence might not always be
compatible with the mesh required by wannier90.x to ensure
interpolation accuracy. Notably, considering a Monkhorst-Pack
(MP) grid for the Wannierisation, the corresponding GW mesh
must be an integer multiple of the MP grid. We here propose a
recipe to find the minimal commensurate meshes for yambo and
wannier90.x calculations, as depicted in Fig. 4. Considering nd
as the number of k-points chosen by the YamboConvergence
workflow, and nc the number of k-points chosen by the
Wannierisation protocol (typically based on a k-point spacing,
0.2 Å−1)45, the target is to find a new (n0d , n

0
c) such that the dense

mesh n0d ¼ k � n0c , where k 2 N, i.e., natural number. The given
input (nd, nc) restricts the search space to a sector bounded by klow
and khigh (see Fig. 4), where klow= 1 (n0d ¼ n0c ¼ maxðnd; ncÞ is
always a good solution), and khigh ¼ dndnce, where ⌈⋅⌉ indicates the
ceiling integer. The search always succeeds since slow ¼
ðmaxðnd; ncÞ;maxðnd; ncÞÞ and shigh= (khigh ⋅ nc, nc) are already
two good solutions. In fact, the optimal solution is often inside
the triangular region determined by the input (nd, nc), slow, and
shigh. The final solution is chosen according to the ℓ1 distance to

Fig. 4 Recipe to find commensurate meshes for GW and
Wannierisation calculations. Using input meshes (11, 5) as an
example, final commensurate meshes (12,6) are found. The khigh and
klow lines, that intersect in the origin, are respectively the imposed
upper and lower bound for searching the commensurate meshes;
the orange dots are possible solutions; the red dot is the chosen
solution, which is the closest to the input in the metric of ℓ1 norm.

Table 1. G0W0 convergence tests on prototypical semiconductors.

System EG0W0
gap (eV) Erefgap (eV) Nb Gcut (Ry) ρk(Å

−1) ΔΓ(meV) ΔΓ
%

Si 1.18 1.1641 400 16 0.33 10 0.3

Diamond 5.82 5.6373 300 20 1 70 0.1

ZnO 2.36 2.3542 800 28 0.25 10 0.4

TiO2 3.20 3.2041 600 12 0.2 10 0.3

MoS2 2.54 2.5474 400 8 0.25 10 0.3

hBN bulk 6.28 6.3040 800 20 0.25 82 1.0

hBN 2D 6.84 7.0674 1200 28 0.2 42 0.5

For each system, the minimum band gap EG0W0
gap (second column) is computed by using the parameters obtained by the automated convergence algorithm

implemented in the YamboConvergence workchain, and compared with previous GW results (third column). The considered parameters are the number of
empty states, Nb, the energy cutoff on the G vectors, Gcut, and the irreducible Brillouin Zone (iBZ) k-points density ρk, expressed as the maximum distance
between adjacent points along a reciprocal axis. The first two parameters are converged jointly. The last two columns include the convergence thresholds
imposed on the G0W0 band gap at the Γ point, both in absolute (ΔΓ) and relative (ΔΓ

%) terms.
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the input, such to ensure the minimal increase in computational
cost. It is also possible to change the metric, e.g., pushing the
solution towards increasing the Wannierisation mesh or GW mesh,
depending on which calculation is less cumbersome. The
aforementioned recipe is repeated for each of the three
dimensions of the MP grid.

Validation of the workflows
The proposed convergence algorithm, as implemented in the
YamboConvergence workchain, has been validated by perform-
ing convergence studies for the quasiparticle G0W0 gap of a set of
prototypical semiconductors: silicon, diamond, ZnO, rutile TiO2,
monolayer MoS2, bulk and monolayer hBN. The convergence
addresses the direct band gap at the Γ point with respect to the
two coupled parameters, Nb and Gcut, and the k-point grid (in
terms of k-points density ρk). Once convergence is achieved, the
minimum band gap EG0W0

gap is also computed. The results are
summarized in Table 1, where, together with EG0W0

gap , we report the
final parameters resulting from the convergence procedure (Nb,
Gcut, and ρk) as well as the convergence threshold (absolute, ΔΓ,
and relative, ΔΓ

%) adopted in each case. Our results are found in
good agreement with previous findings, which are also reported
in the Table 1. Deviations with respect to reference results can be
ascribed to different GW implementations and/or different DFT
starting points used in the related works41. This is the case, for
instance, of the band gap of ZnO: our result (2.36 eV, Table 1) is in
excellent agreement with the result reported in ref. 42, where the
same plasmon pole model is applied, but differs from more recent
benchmark calculations41 (2.8–3.1 eV) that exploit other
approaches. Further details on the convergence tests are
contained in the Supplemental Material (including convergence
plots obtained within this work and additional information in the
Wannierisation procedure).

Figure 5 shows the convergence procedure for monolayer hBN,
considering both the joint convergence with respect to Nb and
Gcut (panel a), and the single-parameter convergence with respect
to the k-mesh (panel b). Starting from an input grid with
Nb ∈ [200,800] and Gcut∈ [4,16] Ry (Fig. 5a, blue shaded area), a
subset of 6 calculations is performed (black squares). Since the
converged guess is above the upper bound of the parameter
space (see “max” variable in the plugin description), a new shifted
grid (orange shaded area) is considered, and a first guess for the
converged parameters is found from the fitting procedure (blue
square), now satisfying the accuracy condition (Eq. (13)). A new fit
is performed including this additional point, which results in a new
converged guess (red square). The procedure is repeated till the
converged result is verified to be consistent with the prediction
within the given threshold (Eq. (13)) and to be the true converged
point (Eq. (14)).
A similar path is followed for the k-mesh convergence (Fig. 5b):

a limited number of calculations is initially performed (black
squares), from which the fitting is evaluated (blue curve), and the
smallest grid compatible with the given threshold is finally
selected (here 8 × 8 × 1). We note that, despite the results of the
simulations seem to have an oscillating behavior with respect to
the fitted curve, the error bar considered here (from the
14 × 14 × 1 mesh) is ~ 0.13% of the band gap at Γ, i.e. ~10 meV,
in line with the accuracy of state-of-the-art GW calculations. Each
of the simulations shown in Fig. 5 was performed on a 40-core
(230 GB RAM) Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz machine,
for a computational time of 6 hours. Considering that the
workflow submits several jobs simultaneously, the total wallclock
time needed to obtain the final converged result is further
reduced to less than 3 hours.
The dependence of the outcome of the algorithm on the input

settings (e.g., the initial value of the parameters and the
boundaries of the convergence space) is a key issue for evaluating

Fig. 5 Convergence algorithm applied to monolayer hBN. a Convergence of the direct quasiparticle band gap at the Γ point with respect to
the coupled parameters Nb and Gcut. The blue shaded area represents the starting grid, while the red shaded area the shifted grid obtained
after the first iteration, according to the flowchart in Fig. 1. Black squares represent the actual calculations performed by the workflow; the
blue square is the first guess for the converged parameters; the red square indicates the final, converged point. The colormap specifies the
absolute relative error ∣Δ%∣ with respect to the converged point. A maximum absolute error of Δ= 42meV is achieved for (Nb, Gcut) = (1200,28
Ry), corresponding to a maximum relative error of Δ%= 0.5%. b Convergence of the direct quasiparticle band gap at the Γ point with respect
to the k-mesh. The black points represent the actual calculations performed by the workflow, whereas the blue points are the ones obtained
within the fitting procedure and used to predict the convergence. The final, converged mesh (red square) is achieved with five simulations.
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the robustness of the algorithm itself. Indeed, the convergence
procedure has been tested on the starting grid for monolayer
MoS2. By using two different grids, Nb ∈ [200,800], Gcut ∈ [4,20]
Ry and Nb∈ [200,1200], Gcut ∈ [8,24] Ry, the convergence
point obtained from the workflow remains the same, i.e.,
(Nb,Gcut)= (400,8). Another important issue to evaluate is the
efficiency of the algorithm. We notice that, in the case of the 2D-
hBN convergence shown in the left panel of Fig. 5, only 14
calculations where required to reach convergence. Older imple-
mentations49 would have required ≥25 simulations to achieve a
final result, with over 40% reduction.
Next, the YamboWannier90WorkChain has been tested on

bulk Si and Cu, in order to validate the automatic Wannier
interpolation of GW band structures for both semiconductors and
metals. Results are plotted in Fig. 6, where we compare the
computed DFT bands (black dots), the Wannier interpolated DFT
bands (red dashed lines), and the Wannier interpolated GW bands
(green solid lines). For Si (Fig. 6a), the comparison between
computed and interpolated DFT bands shows that the results are
almost identical, indicating the accuracy of the Wannierisation of
the KS wavefunctions. Moreover, the typical band gap opening
upon inclusion of GW corrections is found when comparing KS
and QP band structures.
For Cu (Fig. 6b), we obtain a discrepancy of ~10meV around the

Fermi energy (here set to zero) between computed and interpolated
bands at the DFT level. Better accuracy can be achieved imposing
more stringent values of the involved parameters. At QP level, the
GW correction is very small around the Fermi level ( ~ 37 meV), but
still not negligible. Here, the GW convergence is more stringent than
for Si, especially concerning the k-point mesh. Indeed, denser grids
are needed to account for the contribution of intra-band transitions
in the q→ 0 limit, which is crucial for metallic systems but not
explicitly included within the plasmon pole approximation61,62.
Considering the converged parameters, (Nb, Gcut, ρk) = (400, 18 Ry,
0.2 Å−1), the quasiparticle evaluations required to interpolate the
bands for the minimum converged wannier90.x k-point mesh
(16 × 16 × 16) become 2900. This quite large number of QP
corrections can be easily computed using the YamboWorkflow
workchain thanks to the possibility to split the QPs calculation in
several runs, each of them computing only a fraction of the GW
corrections, and then collecting all the data in a final database well-
suited for the YamboWannier90WorkChain. Since the number of
QP corrections to compute can be quite high, in the Supporting
Information (Supplementary Note IIB) we suggest an effective way to
reduce the number of the required calculations for cases when
accurate QP corrections are needed only in a limited energy region,

e.g. around the Fermi energy, and energies outside of the chosen
region can be approximated e.g. through a scissor and stretching
correction.
In this work, we have presented the successful design and

implementation of advanced algorithms in state-of-the-art GW
(BSE) calculations, that is, convergence between interdependent
parameters, error handling and automatic band interpolation by
means of Wannierisation. We validated the tools on selected cases
among semiconductors and metallic systems. The results con-
tained in this work clearly show the power of these developed
workflows for the automated study of excited states properties of
materials, paving the way for achieving high-throughput MBPT
studies. Thanks to these developments and within the next-
generation of pre-exascale and exascale supercomputers, these
simulations may become extensively and routinely performed by
the materials-science community in the near future.

METHODS
For all the systems studied here, we used symmetrized geometries
in such a way to reduce the computational cost of simulations. We
do not expect relevant differences in the results obtained with
fully-relaxed structures. DFT simulations were carried out by using
the QUANTUM ESPRESSO simulation package, which implements plane-
wave basis set and pseudopotential approach. The KS-DFT
exchange-correlation functional was approximated using GGA-
PBE63, through the optimized norm-conserving Vanderbilt (ONCV)
SG15 pseudopotentials64,65. In the case of ZnO, we adopted Local
Density Approximation (LDA), to compare the results with the
existing literature41,42, and PseudoDojo pseudopotentials66. GW
and BSE results were obtained by means of the YAMBO code. The
frequency dependence of the screened interaction potential was
approximated by using the Godby-Needs plasmon pole approx-
imation62 (GNPPA), and the quasiparticle energies were calculated
according to the G0W0 approximation53,54. The Bruneval-Gonze
technique67 was used to reduce the number of empty states Nb

needed for the construction of the correlation Self-Energy Σc (Eq.
(2)). For low-dimensional systems, spurious interactions between
supercell replica were avoided using a slab truncation of the
Coulomb potential68 along the non-periodic direction; its diver-
gences are cured by means of the Random Integration Method69

(RIM), which also accelerates convergence with respect to the BZ
sampling. For 2D systems, specifically, we adopted a recently
developed accelerating technique based on stochastic integration
of the screened potential70, which allows to have GW-converged
results using reduced Monkhorst-Pack k-points grids, just slightly

Fig. 6 Wannier interpolation of GW band structures. Band structure of Si (a) and Copper (b). Interpolated bands are plotted for both DFT
(red dashed line) and GW (green solid line) eigenvalues, as compared to the DFT computed bands (black dots).
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denser than the DFT one. Finally, Wannierisation and band
interpolations are performed by means of the WANNIER90 code. All
the simulations are performed using the automated workflows
implemented in the aiida-yambo and aiida-yambo-
wannier90 plugins, developed for the AiiDA platform and
presented here as part of the results achieved in this work. Input
parameters are generated using the protocols procedure, as
implemented in the corresponding plugins.

DATA AVAILABILITY
The data supporting the findings of this paper are available on the Materials Cloud71

at https://doi.org/10.24435/materialscloud:6w-qh72. Results obtained in this work can
be reproduced by means of the example scripts delivered within the aiida-yambo
and aiida-yambo-wannier90 plugins.

CODE AVAILABILITY
All the codes used in this work are fully available to the community by means of their
repositories, and supported by appropriate documentations and tutorials. The YAMBO

code is accessible at https://www.yambo-code.eu/download/. The QUANTUM ESPRESSO

and WANNIER90 codes can be found, respectively, at https://www.quantum-
espresso.org/download and http://www.wannier.org/download. The AiiDA infrastruc-
ture is available at http://www.aiida.net/download. AiiDA plugins can be downloaded
from the corresponding GitHub repositories. Specifically, the aiida-yambo code is
available at https://github.com/yambo-code/aiida-yambo and The aiida-yambo-
wannier90 code is available at https://github.com/aiidaplugins/aiida-yambo-
wannier90. The plugin documentations are available at https://aiida-yambo.
readthedocs.io/en/master/ and https://aiida-yambo-wannier90.readthedocs.io/en/
latest/, respectively.
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